Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 265
1.
Int Immunopharmacol ; 133: 112158, 2024 May 30.
Article En | MEDLINE | ID: mdl-38691917

BACKGROUND: The prevalence of depression is higher in patients with inflammatory bowel disease (IBD) than in the general population. Inflammatory cytokines and the kynurenine pathway (KP) play important roles in IBD and associated depression. Aripiprazole (ARP), an atypical antipsychotic, shows various anti-inflammatory properties and may be useful in treating major depressive disorder. This study aimed to evaluate the protective effects of ARP on TNBS-induced colitis and subsequent depression in rats, highlighting the role of the KP. MATERIAL AND METHODS: Fifty-six male Wistar rats were used, and all groups except for the normal and sham groups received a single dose of intra-rectal TNBS. Three different doses of ARP and dexamethasone were injected intraperitoneally for two weeks in treatment groups. On the 15th day, behavioral tests were performed to evaluate depressive-like behaviors. Colon ulcer index and histological changes were assessed. The tissue levels of inflammatory cytokines, KP markers, lipopolysaccharide (LPS), nuclear factor-kappa-B (NF-κB), and zonula occludens (ZO-1) were evaluated in the colon and hippocampus. RESULTS: TNBS effectively induced intestinal damages and subsequent depressive-like symptoms in rats. TNBS treatment significantly elevated the intestinal content of inflammatory cytokines and NF-κB expression, dysregulated the KP markers balance in both colon and hippocampus tissues, and increased the serum levels of LPS. However, treatment with ARP for 14 days successfully reversed these alterations, particularly at higher doses. CONCLUSION: ARP could alleviate IBD-induced colon damage and associated depressive-like behaviors mainly via suppressing inflammatory cytokines activity, serum LPS concentration, and affecting the NF-κB/kynurenine pathway.


Anti-Inflammatory Agents , Aripiprazole , Colitis , Cytokines , Depression , Kynurenine , NF-kappa B , Rats, Wistar , Trinitrobenzenesulfonic Acid , Animals , Male , Kynurenine/metabolism , Kynurenine/blood , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Aripiprazole/therapeutic use , Aripiprazole/pharmacology , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Depression/drug therapy , Depression/chemically induced , Depression/metabolism , Rats , NF-kappa B/metabolism , Cytokines/metabolism , Signal Transduction/drug effects , Colon/pathology , Colon/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Disease Models, Animal , Humans
2.
CNS Neurosci Ther ; 30(5): e14739, 2024 05.
Article En | MEDLINE | ID: mdl-38702935

AIMS: The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear. METHODS: Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity. RESULTS: We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment. CONCLUSIONS: These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.


Antipsychotic Agents , Aripiprazole , Disease Models, Animal , Dizocilpine Maleate , Hippocampus , Hyperkinesis , Schizophrenia , Animals , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Schizophrenia/drug therapy , Hippocampus/drug effects , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Dizocilpine Maleate/pharmacology , Mice , Hyperkinesis/drug therapy , Male , Locomotion/drug effects , Locomotion/physiology , Excitatory Amino Acid Antagonists/pharmacology , Mice, Inbred C57BL , Animals, Newborn , Neurons/drug effects , Theta Rhythm/drug effects , Theta Rhythm/physiology
3.
Elife ; 122024 Apr 05.
Article En | MEDLINE | ID: mdl-38578678

Psychosis is characterized by a diminished ability of the brain to distinguish externally driven activity patterns from self-generated activity patterns. Antipsychotic drugs are a class of small molecules with relatively broad binding affinity for a variety of neuromodulator receptors that, in humans, can prevent or ameliorate psychosis. How these drugs influence the function of cortical circuits, and in particular their ability to distinguish between externally and self-generated activity patterns, is still largely unclear. To have experimental control over self-generated sensory feedback, we used a virtual reality environment in which the coupling between movement and visual feedback can be altered. We then used widefield calcium imaging to determine the cell type-specific functional effects of antipsychotic drugs in mouse dorsal cortex under different conditions of visuomotor coupling. By comparing cell type-specific activation patterns between locomotion onsets that were experimentally coupled to self-generated visual feedback and locomotion onsets that were not coupled, we show that deep cortical layers were differentially activated in these two conditions. We then show that the antipsychotic drug clozapine disrupted visuomotor integration at locomotion onsets also primarily in deep cortical layers. Given that one of the key components of visuomotor integration in cortex is long-range cortico-cortical connections, we tested whether the effect of clozapine was detectable in the correlation structure of activity patterns across dorsal cortex. We found that clozapine as well as two other antipsychotic drugs, aripiprazole and haloperidol, resulted in a strong reduction in correlations of layer 5 activity between cortical areas and impaired the spread of visuomotor prediction errors generated in visual cortex. Our results are consistent with the interpretation that a major functional effect of antipsychotic drugs is a selective alteration of long-range layer 5-mediated communication.


Antipsychotic Agents , Clozapine , Humans , Animals , Mice , Antipsychotic Agents/pharmacology , Clozapine/pharmacology , Haloperidol/pharmacology , Brain/physiology , Aripiprazole/pharmacology
4.
Eur J Pharmacol ; 973: 176610, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38663541

Aripiprazole, a third-generation antipsychotic, has been widely used to treat schizophrenia. In this study, we evaluated the effect of aripiprazole on voltage-gated potassium (Kv) channels in rabbit coronary arterial smooth muscle cells using the patch clamp technique. Aripiprazole reduced the Kv current in a concentration-dependent manner with a half-maximal inhibitory concentration of 0.89 ± 0.20 µM and a Hill coefficient of 1.30 ± 0.25. The inhibitory effect of aripiprazole on Kv channels was voltage-dependent, and an additional aripiprazole-induced decrease in the Kv current was observed in the voltage range of full channel activation. The decay rate of Kv channel inactivation was accelerated by aripiprazole. Aripiprazole shifted the steady-state activation curve to the right and the inactivation curve to the left. Application of a repetitive train of pulses (1 and 2 Hz) promoted inhibition of the Kv current by aripiprazole. Furthermore, the recovery time constant from inactivation increased in the presence of aripiprazole. Pretreatment of Kv1.5 subtype inhibitor reduced the inhibitory effect of aripiprazole. However, pretreatment with Kv 7 and Kv2.1 subtype inhibitors did not change the degree of aripiprazole-induced inhibition of the Kv current. We conclude that aripiprazole inhibits Kv channels in a concentration-, voltage-, time-, and use (state)-dependent manner by affecting the gating properties of the channels.


Aripiprazole , Coronary Vessels , Myocytes, Smooth Muscle , Potassium Channel Blockers , Potassium Channels, Voltage-Gated , Animals , Aripiprazole/pharmacology , Rabbits , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Coronary Vessels/drug effects , Coronary Vessels/cytology , Potassium Channel Blockers/pharmacology , Male , Antipsychotic Agents/pharmacology , Dose-Response Relationship, Drug
5.
Anticancer Res ; 44(3): 1051-1062, 2024 Mar.
Article En | MEDLINE | ID: mdl-38423668

BACKGROUND/AIM: Evidence supports that use of aripiprazole sensitizes drug-resistant oral cancer cells. The aim of the study was to investigate whether aripiprazole can achieve sensitization of highly drug-resistant breast cancer cells, as well as identify its relevant mechanisms of action. MATERIALS AND METHODS: MCF-7/ADR, KB, and KBV20C breast cancer cells were treated with aripiprazole, vincristine (VIC), vinorelbine, vinblastine and their combination. Cell viability assay, annexin V analyses, cellular morphology and density observation with a microscope, western-blotting, fluorescence-activated cell sorting (FACS), and analysis for P-gp inhibitory activity were performed to investigate the drugs' mechanism of action. RESULTS: We found that high drug resistance in MCF-7/ADR cells results from high P-gp inhibitory activity via overexpression of P-gp. Aripiprazole reduced cell viability, increased G2 arrest, and upregulated apoptosis when used as a co-treatment with VIC. Furthermore, we demonstrated that co-treatment with vinorelbine and vinblastine increased the sensitization of MCF-7/ADR breast cancer cells to aripiprazole. We confirmed that VIC-aripiprazole combination has much higher sensitization effects than either VIC-thioridazine or VIC-trifluoperazine co-treatment in MCF-7/ADR cells, since the previously known bipolar drugs (thioridazine and trifluoperazine) has lower P-gp inhibitory activity. However, aripiprazole-induced sensitization was not observed in VIC-treated MDA-MB-231 breast cancer cells suggesting that combination therapy with aripiprazole is specific for P-gp-overexpressing drug-resistant breast cancer cells. CONCLUSION: Co-treatment with low doses of aripiprazole sensitized MCF-7/ADR cells to VIC. Combination therapy with aripiprazole may be a valuable tool for delaying or reducing cancer recurrence by targeting P-gp-overexpressing drug-resistant breast cancer cells.


ATP Binding Cassette Transporter, Subfamily B, Member 1 , Breast Neoplasms , Humans , Female , Vincristine/pharmacology , Aripiprazole/pharmacology , Vinorelbine/pharmacology , Breast Neoplasms/drug therapy , Vinblastine/pharmacology , MCF-7 Cells , Thioridazine/pharmacology , Trifluoperazine/pharmacology , Drug Resistance, Neoplasm , Cell Line, Tumor , ATP Binding Cassette Transporter, Subfamily B , Doxorubicin/pharmacology
6.
J Psychiatr Res ; 171: 215-221, 2024 Mar.
Article En | MEDLINE | ID: mdl-38309211

Aripiprazole modulates functional connectivity (FC) between several brain regions in first-episode schizophrenia patients, contributing to improvement in clinical symptoms. However, the effects of aripiprazole on abnormal connections among extensive brain networks in schizophrenia patients remain unclear. We aimed to investigate the effects of 12 weeks of aripiprazole treatment on the FC of large-scale brain networks. Forty-five first-episode drug-naïve schizophrenia patients and 45 healthy controls were recruited for this longitudinal study. Resting-state functional magnetic resonance imaging (fMRI) data were collected at baseline and after 12 weeks of aripiprazole treatment. The patients were classified into those in response (SCHr group) and non-response (SCHnr group) according to the improvement of clinical symptoms after 12-weeks treatment. The FC were evaluated for seven large-scale brain networks. In addition, correlation analysis was performed to investigate associations between changes FC of large-scale brain networks and clinical symptoms. Before aripiprazole treatment, schizophrenia patients showed decreased FC of extensive brain networks compared to healthy controls. The 12-week aripiprazole treatment significantly prevented the constantly decreased FC of subcortical network, default mode network and other brain networks in patients with SCHr, in association with the improvement of clinical symptoms. Taken together, these findings have revealed the effects of aripiprazole on FC in large-scale networks in schizophrenia patients, which could provide new insight on interpreting symptom improvement in SCH.


Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/drug therapy , Aripiprazole/pharmacology , Longitudinal Studies , Magnetic Resonance Imaging , Brain , Brain Mapping , Neural Pathways/diagnostic imaging
7.
Psychiatry Res ; 333: 115721, 2024 Mar.
Article En | MEDLINE | ID: mdl-38245977

Population pharmacokinetic (popPK) models constitute a valuable tool for characterizing the pharmacokinetic properties of once-monthly long-acting injectable aripiprazole (LAI aripiprazole) and quantifying the sources of variability in drug exposure. Our aim is to develop a popPK model of both aripiprazole and its metabolite dehydro-aripiprazole in patients treated with LAI aripiprazole, and to personalize the dosing regimen of aripiprazole across different sub-groups of patients. This is a prospective study investigating the pharmacokinetics of LAI aripiprazole. A total of 93 patients were included, 21 for model development and 71 for external model evaluation. A one-compartment model with linear absorption and elimination adequately described both aripiprazole and dehydro-aripiprazole concentrations. The weight of the patients has been shown to be the factor that most influences the absorption. However, the metabolizing phenotype for CYP2D6 and the concomitant treatment with strong inhibitors of this cytochrome have been shown to be the covariates that most influence total drug exposure. This is the first popPK model developed for LAI aripiprazole that includes aripiprazole and its main active metabolite, dehydroaripiprazole. It provides a personalized dosage recommendation that maximizes the probability of achieving optimal therapeutic concentrations and minimizes the difficulties associated with trial-and-error therapeutic strategies carried out in clinical practice.


Antipsychotic Agents , Humans , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Antipsychotic Agents/therapeutic use , Precision Medicine , Prospective Studies , Cytochrome P-450 CYP2D6/genetics
8.
Int J Mol Sci ; 25(2)2024 Jan 14.
Article En | MEDLINE | ID: mdl-38256109

The available antipsychotics for schizophrenia (SZ) only reduce positive symptoms and do not significantly modify SZ neurobiology. This has raised the question of the robustness and translational value of methods employed during drug development. Electroencephalography (EEG)-based measures like evoked and spontaneous gamma oscillations are considered robust translational biomarkers as they can be recorded in both patients and animal models to probe a key mechanism underlying all SZ symptoms: the excitation/inhibition imbalance mediated by N-methyl-D-aspartate receptor (NMDAr) hypofunction. Understanding the effects of commercialized atypical antipsychotics on such measures could therefore contribute to developing better therapies for SZ. Yet, the effects of such drugs on these EEG readouts are unknown. Here, we studied the effect of the atypical antipsychotic aripiprazole on the gamma-band auditory steady-state response (ASSR), spontaneous gamma oscillations and behavioral features in a SZ rat model induced by the NMDAr antagonist MK-801. Interestingly, we found that aripiprazole could not normalize MK-801-induced abnormalities in ASSR, spontaneous gamma oscillations or social interaction while it still improved MK-801-induced hyperactivity. Suggesting that aripiprazole is unable to normalize electrophysiological features underlying SZ symptoms, our results might explain aripiprazole's inefficacy towards the social interaction deficit in our model but also its limited efficacy against social symptoms in patients.


Antipsychotic Agents , Schizophrenia , Humans , Animals , Rats , Aripiprazole/pharmacology , Schizophrenia/drug therapy , Dizocilpine Maleate/pharmacology , Antipsychotic Agents/pharmacology , Electroencephalography , Receptors, N-Methyl-D-Aspartate
9.
Psychol Med ; 54(6): 1172-1183, 2024 Apr.
Article En | MEDLINE | ID: mdl-37859623

BACKGROUND: Major depressive disorder (MDD) contributes to suicide risk. Treating MDD effectively is considered a key suicide prevention intervention. Yet many patients with MDD do not respond to their initial medication and require a 'next-step'. The relationship between next-step treatments and suicidal thoughts and behaviors is uncharted. METHOD: The VA Augmentation and Switching Treatments for Depression trial randomized 1522 participants to one of three next-step treatments: Switching to Bupropion, combining with Bupropion, and augmenting with Aripiprazole. In this secondary analysis, features associated with lifetime suicidal ideation (SI) and attempts (SA) at baseline and current SI during treatment were explored. RESULTS: Compared to those with SI only, those with lifetime SI + SA were more likely to be female, divorced, or separated, unemployed; and to have experienced more childhood adversity. They had a more severe depressive episode and were more likely to respond to 'next-step' treatment. The prevalence of SI decreased from 46.5% (694/1492) at baseline to 21.1% (315/1492) at end-of-treatment. SI during treatment was associated with baseline SI; low positive mental health, more anxiety, greater severity and longer duration of current MDD episode; being male and White; and treatment with S-BUP or C-BUP as compared to A-ARI. CONCLUSION: SI declines for most patients during next-step medication treatments. But about 1 in 5 experienced emergent or worsening SI during treatment, so vigilance for suicide risk through the entire 12-week acute treatment period is necessary. Treatment selection may affect the risk of SI.


Depressive Disorder, Major , Suicidal Ideation , Humans , Male , Female , Bupropion/therapeutic use , Depressive Disorder, Major/epidemiology , Antidepressive Agents/therapeutic use , Aripiprazole/pharmacology , Aripiprazole/therapeutic use
10.
Biol Direct ; 18(1): 43, 2023 08 01.
Article En | MEDLINE | ID: mdl-37528429

Antipsychotic drugs are the mainstay of treatment for schizophrenia and provide adjunct therapies for other prevalent psychiatric conditions, including bipolar disorder and major depressive disorder. However, they also induce debilitating extrapyramidal syndromes (EPS), such as Parkinsonism, in a significant minority of patients. The majority of antipsychotic drugs function as dopamine receptor antagonists in the brain while the most recent 'third'-generation, such as aripiprazole, act as partial agonists. Despite showing good clinical efficacy, these newer agents are still associated with EPS in ~ 5 to 15% of patients. However, it is not fully understood how these movement disorders develop. Here, we combine clinically-relevant drug concentrations with mutliscale model systems to show that aripiprazole and its primary active metabolite induce mitochondrial toxicity inducing robust declines in cellular ATP and viability. Aripiprazole, brexpiprazole and cariprazine were shown to directly inhibit respiratory complex I through its ubiquinone-binding channel. Importantly, all three drugs induced mitochondrial toxicity in primary embryonic mouse neurons, with greater bioenergetic inhibition in ventral midbrain neurons than forebrain neurons. Finally, chronic feeding with aripiprazole resulted in structural damage to mitochondria in the brain and thoracic muscle of adult Drosophila melanogaster consistent with locomotor dysfunction. Taken together, we show that antipsychotic drugs acting as partial dopamine receptor agonists exhibit off-target mitochondrial liabilities targeting complex I.


Antipsychotic Agents , Depressive Disorder, Major , Animals , Mice , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Drosophila melanogaster , Electron Transport
11.
J Chem Neuroanat ; 132: 102316, 2023 10.
Article En | MEDLINE | ID: mdl-37481172

Schizophrenia is a neurodevelopmental disorder characterized by a loss of dendritic spines in the medial prefrontal cortex (mPFC). Multiple subclinical and clinical studies have evidenced the ability of antipsychotics to improve neuroplasticity. In this study, it was evaluated the effect of the atypical antipsychotic aripiprazole (ARI) on the behavioral and mPFC neuronal disturbances of rats with neonatal ventral hippocampus lesion (nVHL), which is a heuristic developmental model relevant to the study of schizophrenia. ARI attenuated open field hyperlocomotion in the rats with nVHL. Also, ARI ameliorated structural neuroplasticity disturbances of the mPFC layer 3 pyramidal cells, but not in the layer 5 neurons. These effects can be associated with the ARI capability of increasing brain-derived neurotrophic factor (BDNF) levels. Moreover, in the animals with nVHL, ARI attenuated the immunoreactivity for some oxidative stress-related molecules such as the nitric oxide synthase 2 (NOS-2), 3-nitrotyrosine (3-NT), and cyclooxygenase 2 (COX-2), as well as the reactive astrogliosis in the mPFC. These results contribute to current knowledge about the neurotrophic, anti-inflammatory, and antioxidant properties of antipsychotics which may be contributing to their clinical effects and envision promising therapeutic targets for the treatment of schizophrenia.


Antipsychotic Agents , Animals , Rats , Antipsychotic Agents/pharmacology , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Animals, Newborn , Hippocampus , Prefrontal Cortex
12.
Neurosci Lett ; 812: 137410, 2023 08 24.
Article En | MEDLINE | ID: mdl-37495071

The pathogenesis and treatment of cognitive dysfunction in patients with schizophrenia (SCZ) remains a challenge. Exploring new effective treatment strategies is relevant for the improvement of cognitive function. Aripiprazole (ARI) is an atypical antipsychotic that improves some cognitive functions. Nerve growth factor (NGF) has been shown to improve cognitive function in certain neurological impairments and partial neurological deficits, but its mechanism of action in cognitive dysfunction in SCZ is unclear. In this study, we established schizophrenia mouse model with dizocilpine (MK-801); treated mice with ARI alone or in combination with NGF; assessed spontaneous activity and cognitive function using open field test and Morris water maze test; and measured brain-derived neurotrophic factor (BDNF) protein and mRNA expression levels using immunohistochemistry and molecular biology assays. The results showed that ARI alone or in combination with NGF can improve increased spontaneous activity and spatial learning memory deficits in model mice by elevating BDNF expression levels in prefrontal cortex (PFC) and hippocampus (HIP). The results suggest that ARI combined with NGF can improve cognitive function in SCZ, which provides new ideas and directions for the clinical treatment of cognitive dysfunction in SCZ.


Schizophrenia , Mice , Animals , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Nerve Growth Factor/metabolism , Cognition , Hippocampus/metabolism
13.
Mil Med Res ; 10(1): 24, 2023 06 02.
Article En | MEDLINE | ID: mdl-37269009

BACKGROUND: Choosing the appropriate antipsychotic drug (APD) treatment for patients with schizophrenia (SCZ) can be challenging, as the treatment response to APD is highly variable and difficult to predict due to the lack of effective biomarkers. Previous studies have indicated the association between treatment response and genetic and epigenetic factors, but no effective biomarkers have been identified. Hence, further research is imperative to enhance precision medicine in SCZ treatment. METHODS: Participants with SCZ were recruited from two randomized trials. The discovery cohort was recruited from the CAPOC trial (n = 2307) involved 6 weeks of treatment and equally randomized the participants to the Olanzapine, Risperidone, Quetiapine, Aripiprazole, Ziprasidone, and Haloperidol/Perphenazine (subsequently equally assigned to one or the other) groups. The external validation cohort was recruited from the CAPEC trial (n = 1379), which involved 8 weeks of treatment and equally randomized the participants to the Olanzapine, Risperidone, and Aripiprazole groups. Additionally, healthy controls (n = 275) from the local community were utilized as a genetic/epigenetic reference. The genetic and epigenetic (DNA methylation) risks of SCZ were assessed using the polygenic risk score (PRS) and polymethylation score, respectively. The study also examined the genetic-epigenetic interactions with treatment response through differential methylation analysis, methylation quantitative trait loci, colocalization, and promoter-anchored chromatin interaction. Machine learning was used to develop a prediction model for treatment response, which was evaluated for accuracy and clinical benefit using the area under curve (AUC) for classification, R2 for regression, and decision curve analysis. RESULTS: Six risk genes for SCZ (LINC01795, DDHD2, SBNO1, KCNG2, SEMA7A, and RUFY1) involved in cortical morphology were identified as having a genetic-epigenetic interaction associated with treatment response. The developed and externally validated prediction model, which incorporated clinical information, PRS, genetic risk score (GRS), and proxy methylation level (proxyDNAm), demonstrated positive benefits for a wide range of patients receiving different APDs, regardless of sex [discovery cohort: AUC = 0.874 (95% CI 0.867-0.881), R2 = 0.478; external validation cohort: AUC = 0.851 (95% CI 0.841-0.861), R2 = 0.507]. CONCLUSIONS: This study presents a promising precision medicine approach to evaluate treatment response, which has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ. Trial registration Chinese Clinical Trial Registry ( https://www.chictr.org.cn/ ), 18. Aug 2009 retrospectively registered: CAPOC-ChiCTR-RNC-09000521 ( https://www.chictr.org.cn/showproj.aspx?proj=9014 ), CAPEC-ChiCTR-RNC-09000522 ( https://www.chictr.org.cn/showproj.aspx?proj=9013 ).


Antipsychotic Agents , Schizophrenia , Humans , Antipsychotic Agents/adverse effects , Schizophrenia/drug therapy , Schizophrenia/genetics , Schizophrenia/chemically induced , Olanzapine/pharmacology , Olanzapine/therapeutic use , Risperidone/adverse effects , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Precision Medicine , Multiomics , Benzodiazepines/adverse effects , Randomized Controlled Trials as Topic , Phospholipases/therapeutic use
14.
Gen Hosp Psychiatry ; 83: 185-193, 2023.
Article En | MEDLINE | ID: mdl-37269769

OBJECTIVES: Drug use is prevalent in patients with schizophrenia spectrum disorders (SSD) but there is limited knowledge about the influence of drug use on the effectiveness of antipsychotic medication. This secondary explorative study compared the effectiveness of three antipsychotics in patients with SSD, with and without drug use. METHODS: The BeSt InTro multi-centre, head to head, rater-blinded randomised study compared amisulpride, aripiprazole and olanzapine over a 1-year follow-up period. All patients (n = 144) were aged ≥18 years and met the ICD-10 criteria for SSD (F20-29). Clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS). The primary outcome was reduction of a PANSS positive subscale score. RESULTS: At baseline, 38% of all patients reported drug use in the last 6 months before inclusion, with cannabis as the main drug (85%), followed by amphetamine-type stimulants (45%), sedatives (26%), hallucinogens (19%), cocaine (13%), opiates (4%), GHB (4%), solvents (4%), analgesics (4%) and anabolic steroids (2%). The predominant pattern was the use of several drugs. There were no significant overall differences in the PANSS positive subscale score reduction for the three studied antipsychotics among patients either with or without drug use. In the drug use group, older patients treated with amisulpride showed a greater PANSS positive subscale score reduction during the treatment period compared to younger patients. CONCLUSION: The current study showed that drug use does not appear to affect the overall effectiveness of amisulpride, aripiprazole and olanzapine in patients with SSD. However, amisulpride may be a particularly suitable choice for older patients with drug use.


Antipsychotic Agents , Clozapine , Schizophrenia , Humans , Adolescent , Adult , Olanzapine/therapeutic use , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Antipsychotic Agents/adverse effects , Schizophrenia/drug therapy , Amisulpride/pharmacology , Amisulpride/therapeutic use , Clozapine/adverse effects , Risperidone/adverse effects , Benzodiazepines/therapeutic use , Piperazines/adverse effects , Thiazoles/adverse effects , Treatment Outcome
16.
Brain Res Bull ; 199: 110662, 2023 07.
Article En | MEDLINE | ID: mdl-37150328

BACKGROUND: The onset of schizophrenia is associated with both genetic and environmental risks during brain development. Environmental factors during pregnancy can represent risk factors for schizophrenia, and we have previously reported that several microRNA and mRNA expression changes in fetal brains exposed to haloperidol during pregnancy may be related to the onset of this disease. This study aimed to replicate that research and focused on apoptotic-related gene expression changes. METHODS: Haloperidol (1 mg/kg) or aripiprazole (1 mg/kg) was injected into pregnant mice. Using RNA sequencing for the hippocampus of each offspring born from pregnant mice exposed to haloperidol, we analyzed genes identified as changed in our previous report and validated two apoptosis-related genes (Cdkn1a and Apaf1) using quantitative polymerase chain reaction (qPCR) methods. Furthermore, we attempted to elucidate the direct effects of haloperidol and aripiprazole on those mRNA expressions in in vitro experiments. RESULTS: RNA sequencing successfully replicated 16 up-regulated and 5 down-regulated genes in this study. Of those, up-regulations of Cdkn1a and Apaf1 mRNA expression were successfully validated by direct quantification. Moreover, haloperidol and aripiprazole dose-dependent upregulation of both mRNA expressions were confirmed in a Neuro2a cell line. CONCLUSIONS: In the hippocampus of offspring, intraperitoneal injection of haloperidol to pregnant mice induced up-regulation of apoptotic genes that representing the phenotypic change without apoptosis. These findings will be useful for understanding the molecular biological mechanisms underlying the effects of antipsychotics on the fetal brain.


Antipsychotic Agents , Quinolones , Mice , Animals , Haloperidol/pharmacology , Aripiprazole/pharmacology , Piperazines/pharmacology , Quinolones/pharmacology , Antipsychotic Agents/pharmacology , Hippocampus/metabolism , RNA, Messenger/metabolism
17.
Int J Mol Sci ; 24(8)2023 Apr 15.
Article En | MEDLINE | ID: mdl-37108487

Growing evidence indicates that non-antibiotic therapeutics significantly impact human health by modulating gut microbiome composition and metabolism. In this study, we investigated the impact of two psychotropic drugs, aripiprazole and (S)-citalopram, on gut microbiome composition and its metabolic activity, as well as the potential of probiotics to attenuate related dysbiosis using an ex vivo model of the human colon. After 48 h of fermentation, the two psychotropics demonstrated distinct modulatory effects on the gut microbiome. Aripiprazole, at the phylum level, significantly decreased the relative abundances of Firmicutes and Actinobacteria, while increasing the proportion of Proteobacteria. Moreover, the families Lachnospiraceae, Lactobacillaceae, and Erysipelotrichaceae were also reduced by aripiprazole treatment compared to the control group. In addition, aripiprazole lowered the levels of butyrate, propionate, and acetate, as measured by gas chromatography (GC). On the other hand, (S)-citalopram increased the alpha diversity of microbial taxa, with no differences observed between groups at the family and genus level. Furthermore, a probiotic combination of Lacticaseibacillus rhamnosus HA-114 and Bifidobacterium longum R0175 alleviated gut microbiome alterations and increased the production of short-chain fatty acids to a similar level as the control. These findings provide compelling evidence that psychotropics modulate the composition and function of the gut microbiome, while the probiotic can mitigate related dysbiosis.


Gastrointestinal Microbiome , Probiotics , Humans , Dysbiosis/microbiology , Aripiprazole/pharmacology , Citalopram/pharmacology , Citalopram/therapeutic use , Probiotics/pharmacology , Probiotics/therapeutic use , Colon , Psychotropic Drugs/pharmacology
18.
Schizophr Bull ; 49(4): 1055-1066, 2023 07 04.
Article En | MEDLINE | ID: mdl-37021666

BACKGROUND: There is limited knowledge of whether cognitive-behavioral therapy (CBT) or second-generation antipsychotics (SGAs) should be recommended as the first-line treatment in individuals at clinical high risk for psychosis (CHRp). HYPOTHESIS: To examine whether individual treatment arms are superior to placebo and whether CBT is non-inferior to SGAs in preventing psychosis over 12 months of treatment. STUDY DESIGN: PREVENT was a blinded, 3-armed, randomized controlled trial comparing CBT to clinical management plus aripiprazole (CM + ARI) or plus placebo (CM + PLC) at 11 CHRp services. The primary outcome was transition to psychosis at 12 months. Analyses were by intention-to-treat. STUDY RESULTS: Two hundred eighty CHRp individuals were randomized: 129 in CBT, 96 in CM + ARI, and 55 in CM + PLC. In week 52, 21 patients in CBT, 19 in CM + ARI, and 7 in CM + PLC had transitioned to psychosis, with no significant differences between treatment arms (P = .342). Psychopathology and psychosocial functioning levels improved in all treatment arms, with no significant differences. CONCLUSIONS: The analysis of the primary outcome transition to psychosis at 12 months and secondary outcomes symptoms and functioning did not demonstrate significant advantages of the active treatments over placebo. The conclusion is that within this trial, neither low-dose aripiprazole nor CBT offered additional benefits over clinical management and placebo.


Antipsychotic Agents , Cognitive Behavioral Therapy , Psychotic Disorders , Humans , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Psychotic Disorders/drug therapy , Psychotic Disorders/prevention & control , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Knowledge , Treatment Outcome
19.
Behav Pharmacol ; 34(2-3): 154-168, 2023 04 01.
Article En | MEDLINE | ID: mdl-36853856

Autism spectrum disorder (ASD) describes a heterogeneous group of neurodevelopmental conditions characterized by deficits in social communication and repetitive behaviors. Aripiprazole (APZ) is an atypical antipsychotic that can safeguard mice against autism-like behavior induced by valproic acid (VPA). In the present study, we examined the effects of maternal treatment with APZ (10 mg/kg) in juvenile mice prenatally exposed to VPA on neurodevelopmental behaviors, social interactions, communication, and working memory, as well as synaptophysin (SYP), synaptosomal-associated protein, 25 kDa (SNAP-25) and microtubule-associated protein 2 (MAP-2) expression in the medial prefrontal cortex (mPFC) and cell viability in the hippocampus. In addition, to evaluate possible APZ interference with the anticonvulsant properties of VPA on pentylenetetrazole (PTZ)-induced seizures were evaluated. Maternal treatment with APZ significantly prevented body weight loss, self-righting, eye-opening, social interactions, social communication, and working memory deficits in mice prenatally exposed to VPA. Additionally, the decrease in the SYP, SNAP-25, and MAP-2 expressions in the mPFC and cell death in the hippocampus was prevented by APZ. Furthermore, APZ (10 mg/kg) did not interfere with the anticonvulsant effect of VPA (15 mg/kg) in animals with PTZ-induced seizures. These findings indicate that maternal treatment with APZ in pregnant mice exposed to VPA protects animals against the ASD-like behavioral phenotype, and this effect may be related, at least in part, to synaptic plasticity and neuronal protection in the PFC and hippocampus. APZ may serve as an effective pharmacological therapeutic target against autistic behaviors in the VPA animal model of ASD, which should be further investigated to verify its clinical relevance.


Aripiprazole , Autism Spectrum Disorder , Prenatal Exposure Delayed Effects , Animals , Female , Male , Mice , Pregnancy , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Aripiprazole/pharmacology , Aripiprazole/therapeutic use , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Behavior, Animal , Disease Models, Animal , Phenotype , Seizures/drug therapy , Social Behavior , Valproic Acid/adverse effects
20.
Life Sci ; 316: 121366, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36649751

OBJECTIVES: Schizophrenia is a chronic mental illness presented by cognitive deficits that precede its positive and negative symptoms. Sonic hedgehog (Shh)-pathway contributes to its pathophysiology. Shh has a role in neurogenesis as it regulates proliferation and survival of neural cells. In this study, effects of the anti-psychotics Amisulpride and/or Aripiprazole on the Shh-pathway and its relation to cognitive functions and neurogenesis in a rat model of schizophrenia were tested. METHODS: 60 male Wistar rats were allocated into the following groups: control, socially isolated, amisulpride and/or aripiprazole-treated groups. Rats were then subjected to behavioral, biochemical, and histopathological tests to assess the impact of these drugs on Shh-pathway. KEY FINDINGS: Cognitive-dysfunction was evidenced in socially isolated group in novel object, three-chamber, and Morris water maze tests, associated by disorganised Shh-pathway proteins levels concentrations, increased glial fibrillary acidic protein (GFAP)-stained astrocytes. Treated groups favorably reversed these changes evidenced by increased Shh, transmembrane patched-1 and smoothened, glioma-associated-oncogene (GLI)-1 levels, dopamine-1 receptors and brain derived neurotrophic factor, and decreased GLI-3 protein, GFAP immune reaction in astrocytes and inflammatory markers compared to socially isolated group. CONCLUSION: Amisulpride and/or aripiprazole have a favorable role in turning on Shh-pathway with subsequent beneficial cognitive and neurogenesis effects.


Antipsychotic Agents , Schizophrenia , Rats , Male , Animals , Antipsychotic Agents/pharmacology , Aripiprazole/pharmacology , Hedgehog Proteins/metabolism , Amisulpride/pharmacology , Schizophrenia/drug therapy , Rats, Wistar
...